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Abstract—Software metrics have many uses, e.g., defect pre-
diction, effort estimation, and benchmarking an organization
against peers and industry standards. In all these cases, metrics
may depend on the context, such as the programming language.
Here we aim to investigate if the distributions of commonly used
metrics do, in fact, vary with six context factors: application
domain, programming language, age, lifespan, the number of
changes, and the number of downloads. For this preliminary
study we select 320 nontrivial software systems from Source-
Forge. These software systems are randomly sampled from nine
popular application domains of SourceForge. We calculate 39
metrics commonly used to assess software maintainability for
each software system and use Kruskal Wallis test and Mann-
Whitney U test to determine if there are significant differences
among the distributions with respect to each of the six context
factors. We use Cliff’s delta to measure the magnitude of
the differences and find that all six context factors affect the
distribution of 20 metrics and the programming language factor
affects 35 metrics. We also briefly discuss how each context factor
may affect the distribution of metric values. We expect our results
to help software benchmarking and other software engineering
methods that rely on these commonly used metrics to be tailored
to a particular context.

Index Terms—context; context factor; metrics; static metrics;
software maintainability; benchmark; sampling; mining software
repositories; large scale.

I. INTRODUCTION

The history of software metrics predates software engineer-
ing. The first active software metric is the number of lines
of code (LOC) which was used in the mid 60’s to assess the
productivity of programmers [1]. Since then, a large number of
metrics have been proposed [2], [3], [4], [5], and extensively
used in software engineering activities, e.g., defect prediction,
effort estimation and software benchmarks. For example, soft-
ware organizations use benchmarks as management tools to
assess the quality of their software products in comparison to
industry standards (i.e., benchmarks). Since software systems
are developed in different environments, for various purposes,
and by teams with diverse organizational cultures, we believe
that context factors, such as application domain, programming
language, and the number of downloads, should be taken into
account, when using metrics in software engineering activi-
ties (e.g., [6]). It can be problematic [7] to apply metric-based
benchmarks derived from one context to software systems in

a different context, e.g., applying benchmarks derived from
small-size software systems to assess the maintainability of
large-size software systems. COCOMO II1 model supports a
number of attribute settings (e.g., the complexity of product)
to fine tune the estimation of the cost and system size (i.e.,
source lines of code). However, to the best of our knowledge,
no study provides empirical evidence on how contexts affect
such metric-based models. The context is overlooked in most
existing approaches for building metric-based benchmarks [8],
[9], [10], [11], [12], [13], [14].

This preliminary study aims to understand if the distribu-
tions of metrics do, in fact, vary with contexts. Considering
the availability and understandability of context factors and
their potential impact on the distribution of metric values, we
decide to investigate seven context factors: application domain,
programming language, age, lifespan, system size, the number
of changes, and the number of downloads. Since system size
strongly correlates to the number of changes, we only examine
the number of changes of the two factors.

In this study, we select 320 nontrivial software systems from
SourceForge2. These software systems are randomly sampled
from nine popular application domains. For each software
system, we calculate 39 metrics commonly used to assess
software maintainability. To better understand the impact on
different aspects of software maintainability, we further clas-
sify the 39 metrics into six categories (i.e., complexity, cou-
pling, cohesion, abstraction, encapsulation and documentation)
based on Zou and Kontogiannis [15]’s work. We investigate
the following two research questions:

RQ1: What context factors impact the distribution of the
values of software maintainability metrics?
We find that all six context factors affect the distribution of
the values of 51% of metrics (i.e., 20 out of 39). The most
influential context factor is the programming language, since
it impacts the distribution of the values of 90% of metrics (i.e.,
35 out of 39).

1http://sunset.usc.edu/csse/research/COCOMOII
2http://www.sourceforge.net



RQ2: What guidelines can we provide for benchmarking3

software maintainability metrics?
We suggest to group all software systems into 13 distinct
groups using three context factors: application domain, pro-
gramming language, and the number of changes, and conse-
quently, we obtain 13 benchmarks.

The remainder of this paper is organized as follows. In
Section II, we summarize the related work. We describe the
experimental setup of our study in Section III and report our
case study results in Section IV. Threats to validity of our
work are discussed in Section V. We conclude and provide
insights for future work in Section VI.

II. RELATED WORK

In this section, we review previous attempts to build metric-
based benchmarks. Such attempts are usually made up of a set
of metrics with proposed thresholds and ranges.

A. Thresholds and ranges of metric values

Deriving appropriate thresholds and ranges of metrics is
important to interpret software metrics [17]. For instance,
McCabe [2] proposes a widely used complexity metric to
measure software maintainability and testability, and further
interprets the value of his metric in such a way: sub-functions
with the metric value between 3 and 7 are well structured; sub-
functions with the metric value beyond 10 are unmaintainable
and untestable [2]. Lorenz and Kidd [3] propose thresholds
and ranges for many object-oriented metrics, which are inter-
pretable in their context. However, direct application of these
thresholds and ranges without taking into account the contexts
of systems might be problematic. Erni and Lewerentz [4]
propose to consider mean and standard deviations based on
the assumption that the metrics follow normal distributions.
Yet many metrics follow power-law or log-normal distribu-
tions [18], [19]. Thus many researchers propose to derive
thresholds and ranges based on statistical properties of metrics.
For example, Benlarbi et al. [8] apply a linear regression
analysis. Shatnawi [9] use a logistic regression analysis. Yoon
et al. [10] use a k-means cluster algorithm. Herbold et al. [12]
use machine learning techniques. Sánchez-González et al. [20]
compare two techniques: ROC curves and the Bender method.

A recent attempt to build benchmarks is by Alves et al.[11].
They propose a framework to derive metric thresholds by
considering metric distributions and source code scales, and
select a set of software systems from a variety of contexts
as measurement data. Baggen et al. [21] present several
applications of Alves et al.[11]’s framework. Bakota et al. [13]
propose a different approach using probabilities other than
thresholds or ranges, and focus on aggregating low-level met-
rics to maintainability as described in ISO/IEC 9126 standard.

The aforementioned studies do not consider the potential
impact by the contexts of software systems. The contexts can

3A benchmark is generally defined as “a test or set of tests used to
compare the performance of alternative tools or techniques” [16]. In this study,
we refer to “benchmark” as a set of metric-based evaluations of software
maintainability.

affect the effective values of various metrics [7]. As compli-
ments to these studies, our work investigates how contexts
impact the distribution of software metric values. We further
provide guidelines to split software systems using contexts
before applying these approaches (e.g., [9], [10], [11], [12])
to derive thresholds and ranges of metric values.

B. Context factors

Contexts of software systems are considered in Ferreira et
al. [14]’s work. They propose to identify thresholds of six
object-oriented software metrics using three context factors:
application domain, software types and system size (in terms
of the number of classes). However, they directly split all
software systems using the context factors without examining
whether the context factors affect the distribution of metric
values or not, thus result in a high ratio of duplicated thresh-
olds. To reduce duplications and maximize the samples of
measurement software systems, a split is necessary only when
a context factor impacts the distribution of metric values.
Different from Ferreira et al. [14]’s study, we propose to
split all software systems based on statistical significance and
corresponding effect size. We study four additional context
factors and 33 more metrics than their study.

Open source software systems are characterized by
Capiluppi et al. [22] using 12 context factors: age, appli-
cation domain, programming language, size (in terms of
physical occupation), the number of developers, the number
of users, modularity level, documentation level, popularity,
status, success of project, and vitality. Considering not all
software systems provide information for these factors, we
decide to investigate five commonly available context factors:
application domain, programing language, age, system size
(we redefined it as the total number of lines), and the number
of downloads (measured using average monthly downloads).
Since software metrics are also affected by software evolution
[23], we study two additional context factors: lifespan and the
number of changes.

To the best of our knowledge, we are the first to propose
detailed investigation of context factors when building metric-
based benchmarks.

III. CASE STUDY SETUP

This section presents the design of our case study.

A. Factor Description

In this subsection, we briefly describe the definition and
motivation of each factor.

1) Application Domain (AD): describes the type of soft-
ware systems. In general, software systems designed as frame-
works might contain more classes than other types of software
systems.

2) Programming Language (PL): describes the nature of
programming paradigms. Generally speaking, software sys-
tems written in Java might have deeper inheritance tree than
C++, since C++ supports both object oriented programming
and structural programming.



3) Age (AG): is the time duration after creating a software
system. As software development techniques evolve fast, older
software systems might be more difficult to maintain than
newly created software systems.

4) Lifespan (LS): describes the time duration of devel-
opment activities in the life of a software system. Software
systems developed over a long period of time might be harder
to maintain than software systems developed over a shorter
time period.

5) System Size (SS): is the total lines of code of a software
system. Small software systems might be easier to maintain
than large ones.

6) Number of Changes (NC): describes the total number of
commits made to a software system. It might be more difficult
to maintain heavily-modified software systems than lightly-
modified ones.

7) Number of Downloads (ND): describes the external
quality of a software system. It is of interest to find if popular
software systems have better maintainability than less popular
ones. In this study, the number of downloads is measured using
the average monthly downloads which were collected directly
from SourceForge.

B. Data Collection

Data Source. We use the SourceForge data initially collected
by Mockus [24]. There are some updates after that work, and
the new data collection was finished on February 05, 2010.
The dataset contains 154,762 software systems. However, we
find 97,931 incomplete software systems which contain fewer
than 41 files, and an empty CVS repository has 40 files.
There are 56,833 nontrivial software systems in total from
SourceForge. FLOSSMole [25] is another data source, from
where we download descriptions (i.e., application domain)
of SourceForge software systems. Furthermore, we download
latest application domain information4 and monthly download
data5 of studied software systems directly from SourceForge.
Sampling. Investigating all the 56,833 software systems re-
quires a large amount of computation resources. For example,
the snapshots of our selected 320 software systems occupy
about 8 GB hard drive, and the computed metrics take more
than 15 GB hard drive. The average time for computing
metrics of one software system is 6 minutes. The bottleneck
is the slow disk I/O, since we intensively access disks (e.g., to
dump snapshots of source code, and to store metric values).
Applying SSD or RAID storage or using RAM drive might
eliminate this bottleneck. Yet our resource is limited to apply
such solution at this moment. For a preliminary study, we
perform stratified sampling of software systems by application
domains to explore how context factors affect the distribution
of metric values. The limitation of stratified sampling is
discussed in Section V. Moreover, we plan to stratify by the

4http://sourceforge.net/projects/ProjectName (NOTE: the ProjectName
needs to be substituted by the real project name, e.g., a2ixlibrary)

5http://sourceforge.net/projects/ProjectName/files/stats/json?start date=
1990-01-01&end date=2012-12-31 (NOTE: the ProjectName needs to be
substituted by the real project name, e.g., gusi)

remaining six factors in future. In this exploratory study, we
pick nine popular application domains containing over 1,000
software systems. We conduct simple random sampling to
select 100 software systems from each application domain and
obtain 900 software systems in total. Yet there are only 824
different software systems, since a software system may be
categorized into several application domains.

C. Factor Extraction

1) Application Domain (AD): We extract the application
domain of each software system using the data collected
in June 2008 by FLOSSMole [25]. We rank all application
domains using the number of software systems and pick
nine popular application domains: Build Tools, Code Gen-
erators, Communications, Frameworks, Games/Entertainment,
Internet, Networking, Software Development (excluding Build
Tools, Code Generators, and Frameworks), and System Ad-
ministration. We replace sub-domains, if exist, by their parent
application domain.

2) Programming Language (PL): In this study, we only
investigate software systems that are mainly written in C, C++,
C#, Java, or Pascal. For each software system, we dump the
latest snapshot, and determine the main programing language
by counting the total number of files per file type (i.e., *.c,
*.cpp, *.cxx, *.cc, *.cs, *.java, and *.pas).

3) Age (AG): For each software system, we compute the
age using the date of the first CVS commit. In the sampled
824 software systems, the oldest software system6 was created
on November 02, 1996, and the latest software system7 was
created on May 28, 2008.

4) Lifespan (LS): For each software system, we compute
the lifespan by computing the intervals between the first and
the last CVS commits. The quantiles of lifespan in a unit of
day in the sampled 824 software systems are: 0 (minimum),
51 (25%), 338 (median), 930 (75%), and 4,038 (maximum).

5) System Size (SS): For each software system, we count
the total lines of code from the latest snapshot. The quantiles of
the total lines of code in the sampled 824 software systems are:
0 (minimum), 1,124 (25%), 3,955 (median), 14,945 (75%), and
2,792,334 (maximum).

6) Number of Changes (NC): For each software system,
we count the total number of commits from the whole history.
The quantiles of the number of changes in the sampled
824 software systems are: 12 (minimum), 123 (25%), 413
(median), 1,142 (75%), and 94,853 (maximum).

7) Number of Downloads (ND): For each software system,
we first sum up all the monthly downloads to get the total num-
ber of downloads, and search the first and the last month with
at least one download to determine the downloading period.
We divide the total downloads by the total number of months
of the downloading period to obtain the average monthly
downloads. The quantiles of the average monthly downloads in
the sampled 824 software systems are: 0 (minimum), 0 (25%),
6 (median), 16 (75%), and 661,247 (maximum).

6gusi, http://sourceforge.net/projects/gusi
7pic-gcc-library, http://sourceforge.net/projects/pic-gcc-library



D. Data Cleanliness
1) Lifespan (LS): The 25% quantile of the lifespan of the

824 software systems is 51 days. We suspect that software
systems with lifespans less than the 25% quantile are never
finished or are just used as prototypes. After manually check-
ing such software systems, we find that most of them are
incomplete with very few commits. We exclude such software
systems from our study. The number of subject systems drops
from 824 to 618.

2) System Size (SS): We manually check the software
systems with lines of code less than the 25% quantile (i.e.,
1,124) of the 824 software systems. We find that most of such
software systems are incomplete (e.g., vcgenv8), or mainly
written in other languages (e.g., jajax9 is written mainly in
javascript). We exclude such software systems from our study.
The number of subject systems drops from 618 to 506.

3) Programming Language (PL): We filter out software
systems that are not mainly written in C, C++, C#, Java, or
Pascal. The number of subject systems drops from 506 to 478.

4) Number of Downloads (ND): Some of the remaining
478 software systems have no downloads. It might because
that such software systems are still incomplete to be used,
or they are absolutely useless software. We exclude software
systems without downloads from our study. The number of
subject systems drops from 478 to 390.

5) Application Domain (AD): A software system might
be categorized into several application domains. The com-
binations of multiple application domains are considered as
different application domains from single application domains.
The 75% quantile of the number of software systems of all
single and combined application domains is seven. We exclude
combined application domains which have less than seven
software systems, and yield six combined application domains.
The number of subject systems drops from 390 to 323.

The collection date of the application domain is not the same
as the date of collecting source code. To verify whether the
application domains of the 323 software systems remain the
same as time elapses, we checked the latest application domain
information directly downloaded from SourceForge in April
2013. We find that only three software systems (i.e., cdstatus,
g3d-cpp, and satyr10) have changed their application domains,
indicating that application domains collected in June 2008 are
adequate. The application domain of g3d-cpp is removed, and
the application domains of cdstatus and satyr are changed to
Audio/Video. We exclude the three software systems from our
study. The number of subject systems drops from 323 to 320.
Refine Factors. The context factors like age, lifespan, system
size, and the number of changes seem to be strongly related.
Hence, we compute Spearman correlation among these context
factors of the 320 software systems. As shown in Table I,
system size strongly correlates to the number of changes. We
choose to examine the number of changes only.

8http://sourceforge.net/projects/vcgenv
9http://sourceforge.net/projects/jajax
10http://sourceforge.net/projects/ProjectName (NOTE: the ProjectName

needs to be substituted by the real project name, e.g., cdstatus)

TABLE I: The Spearman correlations among four context
factors: age, lifespan, system size, and the number of changes.

Context Factor Lifespan System Size Number of Changes

Age 0.35 0.06 0.14
Lifespan 0.25 0.46

System Size 0.67

TABLE II: The number of software systems per group divided
by each context factor.

Context Factor Group Number of
Systems

Application Domain (AD)

Gbuild 31
Gcodegen 26
Gcomm 23
Gframe 29
Ggames 49
Ginternet 19
Gnetwork 16
Gswdev 41
Gsysadmin 29
Gbuild;codegen 14
Gcomm;internet 13
Gcomm;network 7
Ggames;internet 7
Ginternet;swdev 9
Gswdev;sysadmin 7

Programming Language (PL)

Gc 57
Gcpp 85
Gc# 18
Gjava 146
Gpascal 14

Age (AG)
GlowAG 80
GmoderateAG 160
GhighAG 80

Life Span (LS)
GlowLS 80
GmoderateLS 160
GhighLS 80

Number of Changes (NC)
GlowNC 80
GmoderateNC 160
GhighNC 80

Number of Downloads (ND)
GlowND 90
GmoderateND 150
GhighND 80

Summary. When investigating the impact of application do-
main (respectively programming language) on the distribution
of metric values, we break down the 320 software systems
into 15 (respectively five) groups as shown in Table II. When
investigating the impact of the other four context factors on
the distribution of metric values, we divide the 320 software
systems into three groups, respectively, in the following way:
1) low (below or at the 25% quantile); 2) moderate (above
the 25% quantile and below or at the 75% quantile); and
3) high (above the 75% quantile). The 25% quantile of
lifespan (respectively the number of changes and the number
of monthly downloads) is: 287 days (respectively 364 and
6). The 75% quantile of lifespan (respectively the number of
changes and the number of monthly downloads) is: 1,324 days
(respectively 2,195 and 38). The detailed groups are shown in
Table II.



E. Metrics Computation

In this study, we select 39 metrics related to the five
quality attributes (i.e., modularity, reusability, analyzability,
modifiability, and testability) of software maintainability (as
defined in ISO/IEC 25010). We further group the 39 met-
rics into six categories (i.e., complexity, coupling, cohesion,
abstraction, encapsulation, and documentation) based on Zou
and Kontogiannis[15]’s work. These categories can measure
different aspects of software maintainability. For example, low
complexity indicates high analyzability and modifiability; low
coupling improves analyzability and reusability; high cohe-
sion increases modularity and modifiability; high abstraction
enhances reusability; high encapsulation implies high mod-
ularity; and documentation might contribute to analyzability,
modifiability, and reusability. The metrics and their categories
are shown in Table III. Most metrics can be computed by
a commercial tool, called Understand11. For the remaining
metrics, we computed them by ourselves12 using equations
from the work of Aggarwal et al. [26].

F. Analysis Methods

For each factor, we divide all software systems into non-
overlapping groups, as described in Section III-D.
Analysis method for RQ1: To study how context factors
impact the distribution of metric values, we analyze the overall
impact of each context factor. To examine the overall impact of
a factor f on a metric m, we test the following null hypothesis
for the grouping based on factor f .
H01: there is no difference in the distributions of metric

values among all groups.
To compare the distribution of metric m values among

all groups, we apply Kruskal Wallis test [32] using the 5%
confident level (i.e., p-value<0.05). The Kruskal Wallis test
assesses whether two or more samples originate from the same
distribution. It does not assume a normal distribution since it is
a non-parametric statistical test. As we investigate six context
factors and 39 metrics in total, we apply Bonferroni correction
which adjusts the threshold p-value by dividing the number of
tests (39 × 6=234 tests). If there is a statistically significant
difference (i.e., p-value is less than 0.05/234=2.14e-04), we
reject the null hypothesis and report that factor f impacts the
distribution of metric m values.
Analysis method for RQ2: To provide guidelines on how
to group software systems for benchmarking maintainability
metrics, we break down our analysis method into three steps:
1) for each impacting factor, we examine the impact in detail
by comparing every pair of groups separated by the factor;
2) for any comparison exhibiting a statistically significant
difference, we further compute the corresponding effect size
to quantify the importance of the difference; and 3) we discuss
how to use effect sizes to split software systems. We present
the detailed steps as follows.

11http://www.scitools.com
12https://bitbucket.org/serap/contextstudy

TABLE III: List of metrics characterizing maintainability. The
metrics are from three levels: project level (P), class level (C),
and method level (M).

Category Metric Level

Complexity

Total Lines of Code (TLOC) P
Total Number of Files (TNF) P
Total Number of Classes (TNC) P
Total Number of Methods (TNM) P
Total Number of Statements (TNS) P
Class Lines of Code (CLOC) C
Number of local Methods (NOM) [27] C
Number of Instance Methods (NIM) [28] C
Number of Instance Variables (NIV) [28] C
Weighted Methods per Class (WMC) [29] C
Number of Method Parameters (NMP) M
McCabe Cyclomatic Complexity (CC) [2] M
Number of Possible Paths (NPATH) [28] M
Max Nesting Level (MNL) [28] M

Coupling

Coupling Factor (CF) [30] P
Coupling Between Objects (CBO) [29] C
Information Flow Based Coupling (ICP) [5] C
Message Passing Coupling (MPC) [27] C
Response For a Class (RFC) [29] C
Number of Method Invocation (NMI) M
Number of Input Data (FANIN) [28] M
Number of Output Data (FANOUT) [28] M

Cohesion

Lack of Cohesion in Methods (LCOM) [29] C
Tight Class Cohesion (TCC) [31] C
Loose Class Cohesion (LCC) [31] C
Information Flow Based Cohesion (ICH) [26] C

Abstraction

Number of Abstract Classes/Interfaces (NACI) P
Method Inheritance Factor (MIF) [30] P
Number of Immediate Base Classes (IFANIN) [28] C
Number of Immediate Subclasses (NOC) [29] C
Depth of Inheritance Tree (DIT) [29] C

Encapsulation

Ratio of Public Attributes (RPA) C
Ratio of Public Methods (RPM) C
Ratio of Static Attributes (RSA) C
Ratio of Static Methods (RSM) C

Documentation

Comment of Lines per Class (CLC) C
Ratio Comments to Codes per Class (RCCC) C
Comment of Lines per Method (CLM) M
Ratio Comments to Codes per Method (RCCM) M

1) Pairwise comparison of the distribution of metric values:
To investigate the effects of factor f on metric m, we test the
following null hypothesis for every pair of groups divided by
factor f .
H02: there is no difference in the distributions of metric

values between the two groups of any pairs.
To examine the difference in the distribution of the metric

m values between every two groups, we apply Mann-Whitney
U test [32] using the 5% confident level (i.e., p-value<0.05).
The Mann-Whitney U test assesses whether two independent
distributions have equally large values. It does not assume
a normal distribution since it is a non-parametric statistical
test. As we conduct multiple tests, we also apply Bonferroni
correction to the threshold p-value. If there is a statistically
significant difference, we reject the null hypothesis and claim
that factor f is important to metric m. To quantify the
importance, we further compute the effect size.



TABLE IV: p-value of Kruskal Wallis test. Non statistically significant is denoted as n.s., which means p-value is not less than
2.14e-04 (i.e., 0.05/39/6).

Category Metric Application Programming Age (AG) Lifespan Number of Number of
Domain (AD) Language (PL) (LS) Changes (NC) Downloads (ND)

Complexity

TLOC n.s. n.s. n.s. 1.94e-05 < 2.2e-16 n.s.
TNF n.s. 1.11e-05 n.s. 5.97e-06 < 2.2e-16 n.s.
TNC 3.41e-05 < 2.2e-16 n.s. n.s. 8.05e-12 n.s.
TNM 1.46e-04 < 2.2e-16 n.s. n.s. 1.03e-11 n.s.
TNS n.s. n.s. n.s. 6.26e-06 < 2.2e-16 n.s.
CLOC < 2.2e-16 < 2.2e-16 < 2.2e-16 1.37e-14 n.s. < 2.2e-16
NOM < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
NIM < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
NIV < 2.2e-16 < 2.2e-16 < 2.2e-16 5.27e-10 5.76e-08 5.27e-11
WMC < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
NMP < 2.2e-16 < 2.2e-16 < 2.2e-16 2.93e-07 < 2.2e-16 < 2.2e-16
CC < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
NPATH < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
MNL < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 2.22e-12 < 2.2e-16

Coupling

CF n.s. n.s. n.s. 9.55e-05 < 2.2e-16 n.s.
CBO < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16
ICP < 2.2e-16 < 2.2e-16 8.34e-11 < 2.2e-16 < 2.2e-16 n.s.
MPC < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 1.50e-04
RFC < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
NMI < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
FANIN < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
FANOUT < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

Cohesion

LCOM < 2.2e-16 < 2.2e-16 < 2.2e-16 5.36e-10 n.s. 6.34e-15
TCC < 2.2e-16 < 2.2e-16 1.11e-14 < 2.2e-16 8.87e-14 < 2.2e-16
LCC < 2.2e-16 < 2.2e-16 8.09e-15 < 2.2e-16 5.68e-14 < 2.2e-16
ICH < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16 5.60e-12 n.s.

Abstraction

NACI 6.30e-05 < 2.2e-16 n.s. n.s. 5.78e-09 n.s.
MIF n.s. < 2.2e-16 n.s. n.s. n.s. n.s.
IFANIN < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 4.75e-05 1.69e-04
NOC < 2.2e-16 < 2.2e-16 3.50e-08 8.20e-05 n.s. 1.95e-06
DIT < 2.2e-16 < 2.2e-16 < 2.2e-16 1.52e-14 n.s. < 2.2e-16

Encapsulation

RPA < 2.2e-16 n.s. n.s. n.s. n.s. n.s.
RPM < 2.2e-16 < 2.2e-16 < 2.2e-16 4.13e-06 < 2.2e-16 < 2.2e-16
RSA 4.45e-16 3.26e-05 n.s. 3.38e-07 < 2.2e-16 4.85e-07
RSM < 2.2e-16 1.83e-08 1.41e-05 < 2.2e-16 n.s. < 2.2e-16

Documentation

CLC < 2.2e-16 < 2.2e-16 < 2.2e-16 4.80e-15 1.51e-11 < 2.2e-16
RCCC < 2.2e-16 < 2.2e-16 < 2.2e-16 n.s. < 2.2e-16 < 2.2e-16
CLM < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16
RCCM < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16 < 2.2e-16

TABLE V: Mapping Cohen’s d to Cliff’s δ.

Cohen’s Standard Cohen’s d Pct. of Non-overlap Cliff’s δ

small 0.20 14.7% 0.147
medium 0.50 33.0% 0.330

large 0.80 47.4% 0.474

2) Quantifying the importance of the difference: We apply
Cliff’s δ as effect size [33] to quantify the importance of the
difference, since Cliff’s δ is reported [33] to be more robust
and reliable than Cohen’s d [34]. As Cliff’s δ estimates non-
parametric effect sizes, it makes no assumptions of a particular
distribution. Cliff’s δ represents the degree of overlap between
two sample distributions [33]. It ranges from -1 (if all selected
values in the first group are larger than the second group) to
+1 (if all selected values in the first group are smaller than
the second group). It is zero when two sample distributions
are identical [35].
3) Interpreting the effect sizes: Cohen’s d is mapped to Cliff’s
δ via the percentage of non-overlap as shown in Table V [33].

Cohen [36] states that a medium effect size represents a
difference likely to be visible to a careful observer, while a
large effect is noticeably larger than medium. In this study,
we choose the large effect size as the threshold. If the effect
size is large, we suggest that software systems should be split
into different groups based on factor f when benchmarking
metric m. Otherwise, all software systems can be put in the
same group along with factor f .

IV. CASE STUDY RESULTS

In this section, we report and discuss the results of our study.

RQ1: What context factors impact the distribution of the
values of software maintainability metrics?
Motivations. This question is preliminary to the other ques-
tion. It determines the number of pairwise tests in the other
question. In this research question, we determine if each factor
impacts the distribution of each metric values, and should be
considered in pairwise comparison.



Approach. To address this research question, we examine each
factor individually. For each factor, we divide all software
systems into non-overlapping groups as described in Section
III-D. On all groups divided by a single factor, we test the
null hypothesis H01 from Section III-F using Kruskal Wallis
test with the 5% confident level (i.e., p-value< 2.14e-04
after Bonferroni correction). If the difference is statistically
significant, we reject the null hypothesis H01 and state that the
corresponding factor has an overall impact on the distribution
of the values of the corresponding metric.
Findings. We present p-value of Kruskal Wallis test in Table
IV. For each factor, statistically significant results indicate the
impacting factors. In general, 51% of metrics (i.e., 20 out
of 39) are impacted by all six factors. On the other hand,
programming language, application domain, and lifespan are
three most important factors since they impact over 80% of
metrics (i.e., 35, 34, and 33 out of 39, respectively). Moreover,
the number of changes, age, and the number of downloads
affect more than 70% of metrics (i.e., 31, 28 and 28 out of
39, respectively).

Overall, we conclude that all six factors impact the distri-
bution of the maintainability metric values. The programming
language is the most influential factor, since it affects 90% of
metrics (i.e., 35 out of 39). In the next research question, we
examine types (of programming language, application domain)
and levels (of lifespan, the number of changes, age, the number
of downloads) in more detail to determine what factors should
be considered when benchmarking software maintainability.

RQ2: What guidelines can we provide for benchmarking
software maintainability metrics?
Motivations. In RQ1, we found that each of the six factors
impact the values of at least 75% of metrics. However, con-
sidering all six factors when benchmarking software maintain-
ability can result in a number of small groups, and can increase
the possibility of duplicated benchmarks. To effectively build
benchmarks, we suggest to follow three steps: a) separate
software systems into distinct groups to ensure each group
contains only systems that share a similar context; b) apply
existing approaches (e.g., [14], [21]) to build benchmarks of
each group; c) for a given software system, determine which
groups it belongs to and apply corresponding benchmarks to
evaluate its maintainability. The results of several benchmarks
can be aggregated when evaluating the maintainability of soft-
ware. In this research question, we aim to find the factors that
impact the distribution of the maintainability metric values.
Such factors can affect the derivation of the thresholds/ranges
of the corresponding metrics. Moreover, we provide guidelines
in splitting software systems into distinct groups for building
benchmarks to measure software maintainability.
Approach. To address each research question, we divide all
software systems into non-overlapping groups by each factor,
respectively (as described in Section III-D). If examining all
possible interactions of all six context factors, the number of
groups will be 6,075 (= 15 × 5 × 3 × 3 × 3 × 3). However,
the number of our subject systems is 320, then a large number

TABLE VI: List of the threshold p-values after Bonferroni
correction. The number of pairwise tests required for each
context factor is determined by C(n, 2), which denotes the
number of 2-combinations from a given set S of n elements.
The number of groups by factors AD, PL, AG, LS, NC, and
ND are: 15, 5, 3, 3, 3, and 3, respectively. Hence, the number
of pairwise tests are: C(15, 2) = 105, C(5, 2) = 10, C(3, 2) =
3, C(3, 2) = 3, C(3, 2) = 3, and C(3, 2) = 3, respectively.

Metric
Number of Pairwise Tests Total Number Corrected

by Each Factor of Pairwise Threshold
AD PL AG LS NC ND Tests p-value

TLOC 0 0 0 3 3 0 6 8.33e− 03
TNF 0 10 0 3 3 0 16 3.13e− 03
TNC 105 10 0 0 3 0 118 4.24e− 04
TNM 105 10 0 0 3 0 118 4.24e− 04
TNS 0 0 0 3 3 0 6 8.33e− 03

CLOC 105 10 3 3 0 3 124 4.03e− 04
NOM 105 10 3 3 3 3 127 3.94e− 04
NIM 105 10 3 3 3 3 127 3.94e− 04
NIV 105 10 3 3 3 3 127 3.94e− 04
WMC 105 10 3 3 3 3 127 3.94e− 04

NMP 105 10 3 3 3 3 127 3.94e− 04
CC 105 10 3 3 3 3 127 3.94e− 04
NPATH 105 10 3 3 3 3 127 3.94e− 04
MNL 105 10 3 3 3 3 127 3.94e− 04

CF 0 0 0 3 3 0 6 8.33e− 03

CBO 105 10 3 3 0 3 124 4.03e− 04
ICP 105 10 3 3 3 0 124 4.03e− 04
MPC 105 10 3 3 3 3 127 3.94e− 04
RFC 105 10 3 3 3 3 127 3.94e− 04

NMI 105 10 3 3 3 3 127 3.94e− 04
FANIN 105 10 3 3 3 3 127 3.94e− 04
FANOUT 105 10 3 3 3 3 127 3.94e− 04

LCOM 105 10 3 3 0 3 124 4.03e− 04
TCC 105 10 3 3 3 3 127 3.94e− 04
LCC 105 10 3 3 3 3 127 3.94e− 04
ICH 105 10 0 3 3 0 121 4.13e− 04

NACI 105 10 0 0 3 0 118 4.24e− 04
MIF 0 10 0 0 0 0 10 5.00e− 03

IFANIN 105 10 3 3 3 3 127 3.94e− 04
NOC 105 10 3 3 0 3 124 4.03e− 04
DIT 105 10 3 3 0 3 124 4.03e− 04

RPA 105 0 0 0 0 0 105 4.76e− 04
RPM 105 10 3 3 3 3 127 3.94e− 04
RSA 105 10 0 3 3 3 124 4.03e− 04
RSM 105 10 3 3 0 3 124 4.03e− 04

CLC 105 10 3 3 3 3 127 3.94e− 04
RCCC 105 10 3 0 3 3 124 4.03e− 04

CLM 105 10 3 3 3 3 127 3.94e− 04
RCCM 105 10 3 3 3 3 127 3.94e− 04

of groups might be empty. Therefore, interactions of all six
context factors are not investigated in this study.

For each pair of groups divided by a factor f , we test
the null hypothesis H02 as discussed in Section III-F using
Mann-Whitney U test with the 5% confident level. We apply
Bonferroni correction to adjust the threshold p-value based
on the findings of RQ1. The corrected threshold p-values are
shown in Table VI. If the difference is statistically significant,
we reject the null hypothesis H02 and further compute the
Cliff’s δ effect size to determine the importance of the factor.

If the Cliff’s δ effect size is large, we conclude that the



TABLE VII: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of comlexity metrics).

Metric Factor Group1 Group2 Cliff’s δ

TLOC NC GlowNC GhighNC 0.498

TNF NC GlowNC
GmoderateNC 0.573
GhighNC 0.639

GmoderateNC GhighNC 0.513

TNC

AD Gframe
Gnetwork −0.519
Gcomm;network −0.759

PL

Gc
Gc# 0.596
Gjava 0.667

Gpascal

Gcpp 0.560
Gc# 0.729
Gjava 0.885

NC GlowNC
GmoderateNC 0.476
GhighNC 0.552

TNM

AD Gframe Gnetwork −0.599

PL

Gc
Gc# 0.614
Gjava 0.591

Gpascal

Gcpp 0.683
Gc# 0.758
Gjava 0.832

NC GlowNC GhighNC 0.560

TNS NC GlowNC GhighNC 0.541

TABLE VIII: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of coupling metrics).

Metric Factor Group1 Group2 Cliff’s δ

CBO
AD Gcomm;network Gbuild;codegen 0.482

PL Gpascal
Gc# 0.486
Gjava 0.550

RFC
AD

Gcomm;network

Gnetwork 0.524
Ginternet 0.578
Gsysadmin 0.492
Gcodegen 0.764
Gframe 0.620
Gbuild 0.703
Gswdev 0.847
Ggames;internet 0.643
Ginternet;swdev 0.647
Gcomm;internet 0.642

Gbuild;codegen
Gcomm;network −0.923
Gswdev;sysadmin −0.531

PL Gc# Gjava 0.666

CF NC GlowNC GhighNC −0.554

NMI PL Gjava
Gc# −0.516
Gpascal −0.516

corresponding factor f has a large impact on the distribution
of the corresponding metric m. Hence, factor f should be
considered when benchmarking metric m.
Findings. To better understand the impact of context factors
on different aspects of software maintainability, we report our
findings along the six categories of metrics: complexity, cou-
pling, cohesion, abstraction, encapsulation and documentation.
1) Complexity.

As shown in Table VII, the factor impacting TLOC, TNF,
and TNS is the number of changes. The factors impacting

TABLE IX: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of cohesion metrics).

Metric Factor Group1 Group2 Cliff’s δ

LCOM AD Gnetwork Gcomm;network 0.552

TABLE X: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of abstraction metrics).

Metric Factor Group1 Group2 Cliff’s δ

NACI PL Gjava Gpascal −0.773

IFANIN
AD Gcomm;network

Gnetwork 0.794
Ginternet 0.751
Gsysadmin 0.657
Gcomm 0.776
Gcodegen 0.780
Gframe 0.748
Gbuild 0.738
Gswdev 0.736
Ggames 0.598
Ggames;internet 0.620
Gswdev;sysadmin 0.828
Ginternet;swdev 0.704
Gcomm;internet 0.745
Gbuild;codegen 0.824

Ggames Gswdev;sysadmin 0.486

PL Gjava
Gcpp −0.514
Gpascal −0.708

DIT AD

Gcomm;network

Gnetwork 0.820
Ginternet 0.861
Gsysadmin 0.772
Gcomm 0.907
Gcodegen 0.954
Gframe 0.899
Gbuild 0.870
Gswdev 0.962
Ggames 0.839
Ggames;internet 0.746
Gswdev;sysadmin 0.910
Ginternet;swdev 0.915
Gcomm;internet 0.910

Gbuild;codegen

Gsysadmin −0.549
Gcomm;network −0.983
Ggames;internet −0.517

MIF PL
Gjava

Gcpp −0.777
Gc# −0.849
Gpascal −0.666

Gcpp Gc# 0.657

TNC and TNM are application domain, programming language,
and the number of changes. Overall, the distributions of
metric values in the complexity category are strongly impacted
by three context factors: application domain, programming
language, and the number of changes.
2) Coupling.

As shown in Table VIII, the factors impacting CBO and
RFC are application domain and programming language. The
factor impacting CF (respectively NMI) is the number of
changes (respectively programming language). Overall, the
distributions of metric values in the coupling category are
strongly impacted by three context factors: application domain,
programming language, and the number of changes.



TABLE XI: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of encapsulation metrics).

Metric Factor Group1 Group2 Cliff’s δ

RPA AD Gbuild

Ginternet 0.483
Gcodegen 0.558
Gframe 0.619
Gswdev 0.576
Ggames 0.682
Gswdev;sysadmin 0.543
Ginternet;swdev 0.550
Gcomm;internet 0.505
Gbuild;codegen 0.527

RSM AD Gcomm;network Gcomm;internet 0.710

TABLE XII: Cliff’s δ and p-value of Mann-Whitney U test of
every statistically significant different pairs of groups divided
by factors. (investigation of documentation metrics).

Metric Factor Group1 Group2 Cliff’s δ

RCCC
AD Gbuild;codegen Gnetwork −0.513
PL Gjava Gpascal −0.611

3) Cohesion.
As shown in Table IX, the factor impacting LCOM is

application domain. Overall, the distributions of metric values
in the cohesion category are strongly impacted by application
domain only.
4) Abstraction.

As shown in Table X, the factor impacting NACI and MIF is
programming langauge. The factor impating DIT is application
domain. The factors impacting IFANIN are application domain
and programming langauge. Overall, the distributions of metric
values in the abstraction category are strongly impacted by
application domain and programming language.
5) Encapsulation.

As shown in Table XI, the factor impacting RPA and RSM
is application domain. Overall, the distributions of metric
values in the encapsulation category are strongly impacted
by application domain only.
6) Documentation.

As shown in Table XII, the factors impacting RCCC are
application domain and programming language. Overall, the
distributions of metric values in the documentation category
are strongly impacted by application domain and programming
language.
Guidelines for Benchmarking Maintainability Metrics.
Based on our findings, application domain, programming
language, and the number of changes strongly impact the
distribution of maintainability metric values.

When benchmarking the 39 metrics, we suggest to partition
software systems into 13 groups: 1) five groups along applica-
tion domain (i.e., Gbuild, Ggames, Gframe, Gbuild;codegen, and
Gcomm;network); 2) five groups along programming language
(i.e., Gc, Gcpp, Gc#, Gjava, and Gpascal); and 3) three groups
along the number of changes (i.e., GlowNC , GmoderateNC ,
and GhighNC). When benchmarking metrics from a particular

TABLE XIII: Guidelines on partitioning software systems
when building metric based benchmarks.

Metric Factor GroupCategory

Complexity

AD Gframe and others
PL Gc, Gpascal and others
NC GlowNC , GmoderateNC , and GhighNC

Coupling
AD Gcomm;network , Gbuild;codegen, and others
PL Gpascal, Gjava, and others
NC GlowNC , GmoderateNC , and GhighNC

Cohesion AD Gcomm;network , and others

Abstraction

AD Gcomm;network , Ggames, Gbuild;codegen,
and others

PL Gjava, Gcpp, and others

Encapsulation AD Gbuild, Gcomm;network , and others

Documentation AD Gbuild;codegen, and others
PL Gjava, and others

category, we provide detailed suggestions in Table XIII. More-
over, our approach can be applied to other software metrics and
other software systems for generating guidelines on building
benchmarks of such software metrics.

V. THREATS TO VALIDITY

We now discuss the threats to validity of our study following
common guidelines provided in [37].

Threats to conclusion validity concern the relation between
the treatment and the outcome. Our conclusion validity threats
are mainly due to sampling errors. Since stratified sampling
was performed only along application domain, sampled soft-
ware systems may not well represent along other five factors.
Some differences along these factors, thus, may not be de-
tected, and the detected differences are likely to be only a
subset of differences. We plan to stratify along other factors.

Threats to internal validity concern our selection of subject
systems and analysis methods. We randomly sample 320
software systems from SourceForge, some of the findings
might be specific to software systems hosted on SourceForge.
Future studies should consider using software systems from
other hosts, and even commercial software systems.

Threats to external validity concern the possibility to gen-
eralize our results. Some of the findings might not be directly
applicable to different software systems. Yet our approach can
be applied to find guidelines for benchmarking maintainability
of different open source and commercial software systems.

Threats to reliability validity concern the possibility of
replicating this study. We attempt to provide all the necessary
details to replicate our study. SourceForge is publicly available
to obtain the same data. We make our data and R script
available13 as well.

VI. CONCLUSION

In this work, we perform a large scale empirical study to
investigate how the six context factors affect the distribution

13https://bitbucket.org/serap/contextstudy



of maintainability metric values. We apply statistical methods
(i.e., Kruskal Wallis test, Mann-Whitney U test and Cliff’s
δ effect size) to analyze 320 software systems, and provide
empirical evidence of the impact of context factors on the
distribution of maintainability metric values. Our results show
that all six context factors impact the distribution of the values
of 51% of metrics. The most influential factors are application
domain, programming language, and the number of changes.
Based on our findings, we further provide guidelines on how
to group software systems according the six context factors.
We expect our findings to help software benchmarking and
other software engineering methods using the 39 software
maintainability metrics.

In the future, we plan to extend our study using more soft-
ware systems from SourceForge, GoogleCode, and GitHub,
and to perform stratified sampling along all six context factors.
Moreover, we want to derive the thresholds and ranges of
metric values based on our findings and provide benchmarks
to measure maintainability. We also want to verify whether
our findings can help sample representative software systems
for empirical studies.
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